專刊暨經驗交流

船艏排水航行式船舶 永遠順流航行的船舶

(發明專利申請字號:105102564)

文/ 呂 正 忠

從根本原理上,改變船舶傳統 航行方式,不再撞浪;而是排開船艏 海水航行,等於永遠航行於大順流之 中。

船舶航行的省油方式:

<u>尖頭刀狀艏船</u>:藉由船舶形狀,減少船體寬度,而減少航行水阻力。

水翼船:小船,於大量耗油,達到一定高速時,藉由水翼昇高船體,減少與水接觸面積,(水阻力是空氣阻力的720倍),而減少航行耗油。

裏海怪物:像水上飛機,在達到 更高速度時,藉由機翼拉升船體,保 持高速在空中航行,以免除航行的水 阻力。

雙船身船:藉由雙船身,浮力部 分降到深水底下,水面附近是支架, 把波浪影響船體降到最低,避免搖 晃;雙船身中間,可以享受水面上升 氣流幫助,提高船體,維持浮力,所 以很多客輪與軍艦,喜歡她高速穩定 的航行。

潛球艏船:於船速達到12節以上時,潛球艏造波,能減少興波阻力, 而省卻6~12%航行耗油量,是目前 使用最多的,但在經濟航速以下,反 而更耗油,很多貨櫃船東因此進場, 再度修改潛球艏形狀,以適合更低速 航行。

超細氣泡包覆船:仿效企鵝由海底深處,全身包覆氣泡,高速衝刺上岸,躲避天敵於岸邊的獵殺行為,此時速度能變成例行的三倍,藉由水是空氣密度的800倍,而減少水阻力。某實驗室號稱,曾經用超細氣泡,達到80%省油目的;但是實際上,台大與台船研究後發現,超細氣泡會凝結混合,最高只有18%省油;據說日本實驗室,目前已有最高約30%省油紀錄,已有專利權證與試驗船,因爲仍有浮力…疑慮,而尚未推廣。

***船艏排水航行式船舶:

(發明專利申請字號105102564)

航行耗油=主機耗油(A)×速度 (倍數)×空氣阻力(倍數)×水阻力(倍 數)

(A)以10節為準;主機耗油隨速 度成正比,油門則隨總阻力變化; 法計入日用耗油. 38 海員月刊第752期

速度	主機耗油	空氣阻力	水阻力	航行耗油	艏排水式航行耗油		
浬/時	噸/天	航行耗油 倒推 (倍 數)	倍數	噸/天	主機耗 油×空 氣阻力	艏受水壓力	航行耗油
1	0.1A	0.668	0.015	0.01	0.40	0.014	0.40
2	0.2A	0.755	0.053	0.05	0.91	0.051	0.91
3	0.3A	0.810	0.111	0.16	1.46	0.11	1.46
4	0.4A	0.852	0.188	0.38	2.04	0.18	2.04
5	0.5A	0.886	0.282	0.75	2.66	0.27	2.66
6	0.6A	0.914	0.394	1.30	3.29	0.38	3.29
7	0.7A	0.939	0.522	2.06	3.95	0.50	3.95
8	0.8A	0.962	0.665	3.07	4.62	0.63	4.62
9	0.9A	0.982	0.825	4.37	5.30	0.79	5.3
10	6.0	1.00	1.00	6.00	6.00	0.9538	6.00
12	1.2A	1.032	1.395	10.4	7.43	1.33	7.43
14	1.4A	1.061	1.848	16.5	8.91	1.76	8.91
16	1.6A	1.086	2.358	24.6	10.42	2.25	10.42
18	1.8A	1.108	2.923	35.0	11.97	2.79	11.97
20	2A	1.129	3.543	48.0	13.55	3.38	13.55
24	2.4A	1.166	4.9418	82.9	16.78	4.71	16.78
30	3A	1.212	7.426	162.0	21.82	7.08	21.82
40	4A	1.275	12.553	384.0	30.59	11.97	30.59
50	5A	1.325	18.863	750.0	39.76	17.99	39.76

理論上:

1. 航行耗油=主機耗油A x速度(倍數) x空氣阻力(倍數) x水阻力(倍數)

公式: 航行耗油是船速的立方;總阻力是船速的平方比;水阻力是船速的平方比;水阻力是船速的1.825次方;空氣阻力(涵蓋其它阻力),由航行耗油,倒著推算倍數而來.

故: 艏受水壓力降成多少; 水阻力

(倍數)與航行耗油,就會隨比例降 多少.

例如: A=6噸/天,在航速50 <u>節時:</u> 5倍x A x 1.325倍x 18.863倍= 750噸/天

艏受水壓力17.99 Kgs/cm²→ 3.38Kgs/cm² (20節時,艏受水 壓力)

水阻力(倍數) 18.863倍→3.543倍

航行耗油=5 A x1.325 x 3.543 =141噸/天(原航行耗油的18.8% 耗油量)。

艏受水壓力17.99 Kgs/cm²→ 0.9538 Kgs/cm² (10節時,艏 受水壓力)

水阻力(倍數) 18.863倍→ 1.0 倍 航行耗油=5 A x1.325 x 1.0 = 39.8噸/天 (原航行耗油的 5.3%)

艏受水壓力17.99 Kgs/cm²→
0.014 Kgs/cm² (1節時,艏受水 壓力)

水阻力(倍數) 18.863倍→ 0.015 倍

航行耗油=5 A x1.325 x 0.015 =0.6噸/天

艏受水壓力17.99 Kgs/cm²→ -1(真空) Kgs/cm²,

航行耗油=5 A x1.325 x ? (??? 噸/天)

很明顯:<u>動力的分配,應該移一大部</u> 分到船艏,才對!

2.對照事實:

記得老船長與日本船副,縱使在 半夜,都會專門收聽日本黑潮特報, 在海圖上標示後,盡量順著航行。黑 潮大概4節(浬/小時)左右,由表內查 出,順著黑潮時,艏受水壓力,全速 航行大約降低1 Kgs/cm², (水阻 力自船速18節/2.79 Kgs/cm²,減 低成14節/1.76 Kgs/cm²;則耗油 倍數,自2.923倍變成1.848倍);而 主機所需馬力(航行用油),竟然降低 37%以上!!! 與表列公式符合,非常 驚人!!!

步槍在水裡發射時:子彈行走 十幾公尺就落地!在子彈前,出現兩 道水阻力壓力波;子彈後,看到三個 真空引起爆炸性伸縮氣泡,子彈只 有1/100,在空氣中的行走距離就落 地!想辦法弄反過來呢?在子彈(魚 雷,潛水艦艇)前排水,降低阻力, 甚至達到真空;而在子彈(魚雷,潛水 艦艇)後,是螺旋槳呢...?不必有百 倍效率,五倍十倍,能夠做到,應該 不是難事!!!

3. 排除艏水阻力,所需要幫浦之馬 力(以72 m³,每一艘船都不同; 50~20浬/時;18.863~3.543倍 推算.) 計算如下:

公式: Hp=Qm³/minxHm xρ/4.562/1.341/Kw/Hp/η
72M³(噴水總量)x0.9538x10(水頭高度) x15.32(水阻力倍數) x1.025(比重) ÷4.562÷1.341÷0.75(泵效率)÷0.746(Kw/Hp)=(噴水總量)x(水阻力倍數)x2.8563(變成函數)Hp=3151 Hp*Hm(水頭高度)=0.9538 Kgs/cm²x10 x15.32(水阻力倍數)*若船艏泵耗油率,以每500馬力3 噸/天推算:50~20浬/時,耗油 爲3151 Hp/18.9噸/天;50~10浬/時,耗油爲3504 Hp/21.0噸/天。

海員月刊第752期

實際計算需要馬力時,會因幫 浦吸口朝向前方,水阻力變成助力, 增加幫浦出口壓力,抵銷水阻力而省 油;船艏過來的水流,被加壓噴出排 外之後,中間再繼續往外排,讓它在 船舷,螺旋槳前方才迴流回來,增加 螺旋槳效率;因船艏排水後,有股船 艉的自然水壓推力…;以上只是面臨 最大困難程度時的推算而已;再說現 在使用的是,主動式排水航行系統, 跟以前不同,需要建立一整套全新設 備,去做新式的船模試驗,全部都必 須經由實驗後,才能確認結果…,但 是在理論上,此構想出現非常多的亮 點,再怎麼打折扣,都是非常震撼人 心的!!!台灣海運界,適逢稱霸全球之 契機,錯渦則又會再度面臨,長期挨 打的局面。

- 4. 船艏幫浦: 於圓形凸出船艏的船底,裝置船艏幫浦,抽取前方海水加壓後,向A.下方;B.左右;C.後左右方噴水,將前方海水合倂推開後,在船邊形成渦流,於船艉處才迴流到螺旋槳,如此可以:
 - 1.吸入船艏前方海水加壓後,直 A.下方;B.左右方噴水,以排除 船艏的水阻力。
 - 2.因船艏排水,而有股自船艉的自然大氣水壓,往船艏的推力。
 - 3.船艏排水在船艉流回時,會增加 螺旋槳效率,減免空蝕現象。
 - 4.船艏幫浦向<u>C.後左右方噴水,</u>可 以取代Bow Thruster使用,靠 碼頭不必船艏拖船。

5. 航行於進出港,淺水區,與過運河時,船艏幫浦向A.下方; C.後左右方噴水,會消除淺水效應,避免淺水航行,耗油量非常巨大的問題。

***另外一型船艏排水航行式船舶:在雙船身的水底船艏,裝上高速螺旋槳或花灑,排除船艏過來水流,此時船艏受力,低於零後,就是近真空狀態,這是最簡單的方法,讓雙船身的船艏,變成超省油的航行方式。

5.特別感謝及引用:中國驗船中心研究處處長 黃建樺博士,提供對某韓國貨櫃船實驗數據CFD計算結果:艏於船速24浬/時,推算實船尺度受力為 452.0 kPa.及由CSR-H規範公式,推算值為472.5 kPa.取用平均值4.7135 Kgs/cm²,是10浬/時的4.9418倍艏水阻力,壓力就是 0.9538 Kgs/cm²,實際艏受到水阻力與需要幫浦之馬力,既可依此而確認出來。引用之論文: 直接計算法在船體結構之應用。2013/7/8發表,第48/83頁

謝謝 日本船公司,長期嚴苛地,監督,訓練,指導!

感恩基水同學們!多年無私地共同研 討所學經驗,惠我良多!

感謝老天!!! 在許多難關下,能因努力與機運,而順利渡過!