
專刊暨經驗交流

目視瞭望講座之3

文/ 李 文 愚

5-13 顯著目標的圖像方位 可以很快知道來船的大概方位,是我 們的直覺一部分

各位朋友大家好,前兩個月我 們談到如何觀察目標的方位與方位 的變化,我們觀察海上的活動目標, 如同我們在把舵的時候,要觀測船艏 向的擺動,這是操船直覺的一個重要 關鍵,目標船在海面上的運動是隨時 在變的,我們要觀察目標船的方位 步化,要利用我們自己船上甲板 的固定目標,來做比較。這些甲板上 的固定目標,來做比較。這些甲板上 的參考點,我們平常可以先測得它與 我們習慣瞭望位置相關的夾角,如果 能夠把這些夾角的度數背起來,那下 次我們在海上看到有目標船出現的時 候,可以很快知道來船的大概方位。

如上圖5-13所示,為一沒有甲板貨物的油輪,但是船上甲板的裝置,吊桿、繫纜樁等,可以作為相對方位的參考點,如果觀測者站在駕駛

台船舯偏左的位置,觀測到前桅杆的左邊相對方位為0度、觀測左舷吊桿頂的相對方位為48度、觀測左舷繫纜樁的相對方位為39度、觀測左舷船頭擋浪板的相對方位為23度、觀測右舷船頭吊桿架的相對方位為32度。觀測右舷船頭吊桿架的相對方位為52度。

這些參考點是固定的甲板屬具, 在甲板上的位置,是永遠固定不變 的。平常沒事的時候,我們可以從船 舯的羅經複述器,讀取他們的相對方 位。或是找一個比較顯著的點,如左 舷甲板的黑點(可能為船頭帶拖船的 纜樁),讀出它的相對方位為39度。 知道這些參考點的相對方位以後,如 果我們站立的位置,是在船舯的羅經 複述器後面,那麼來船的相對方位, 就可以做一個大約的估計,而不必去 實際讀取羅經複述器上面的方位數 值。圖上帆船船艉的方位約為52度, 因為它的相對方位線,已經超過左舷 甲板的黑點39度,與左舷吊桿頂方 位的48度(沒經驗的人,可以參見右 舷吊桿頂的方位),現在既然超過48 度,大約就是52度。而且這一次,我 們已經學聰明了,直接觀測來船的船 尾方向,以確認他船的方位變化。

這是我們第一次,不必為來船的 方位,而去低頭讀取它的羅經方位, 就能做一個大概的估計。這是我們的

直覺一部分,我們如果能夠按部就班的訓練,目視瞭望採取望的步驟,就可以避免碰撞危機,那為什麼我們還要訓練到我們避碰的直覺?這一部分,以後我們就要談談避碰的三個階段,與避碰能力的等級,每一個人到最後幹船長時,都是要憑著直覺來操作,才不容易出錯,依靠任何的數字,或者是儀器,都容易產生失誤,這是人類天生的限制,沒有辦法克服的。

為了避免參考點的視覺落差,瞭 望時維持在駕駛台上的相同位置是最 重要的。瞭望時眼睛要低下來確認參 考點,假如目標的方位在改變,目標 船不會在原來的相對方位線上。

- =>目標相對方位變大,目標船可 能通過船艉
- =>目標相對方位變小,目標船可 能通過船頭

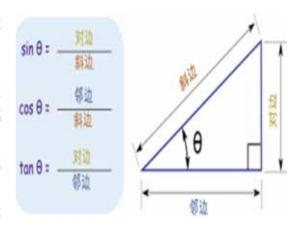
目標船有可能通過船頭或是船艉, 那到底能不能過?

避碰規則第七條,避碰危機

- (d)在研判是否有碰撞危機存在時, 應考慮下列各項:
- (i)如果駛近船舶之羅經方位無顯著改變時,碰撞危機應視為存在
- (ii)雖然駛近船舶之方位明顯改變, 碰撞危機有時仍然可能存在,尤 其當接近一巨型船或拖曳船,或 逼近另一船。

使用目標羅經方位的變化,來確認 碰撞危機

避碰規則第七條(d)項,告訴我


們,可輕鬆的藉由羅經檢查目標真方 位的變化,來確定碰撞危機。確認碰 撞危機的重點,是在目標羅經方位的 變化,是否能夠安全通過本船的船 頭或船艉,以右側來船為例,目標船 的羅經方位的變化是,是目標的羅經 方位越來越小,最後小於本船的真航 向,代表目標船已經通過船頭。以右 側來船為例,如果目標船的羅經方位 越來越大,趨近於本船的真航向加上 180度,目標船能夠視為通過本船的 船尾。

反之,如果駛近船舶之羅經方 為無顯著改變時,碰撞危機應視為存 在。

何謂無顯著改變?多少角度才是顯著改變?

對一條300公尺長的目標船而言,如果本船需避讓他船兩倍船身的空間,兩倍船長300公尺x 2=600公尺做對邊,以兩船的距離作斜邊,帶入直角三角形的正弦角,

對邊/斜邊=正弦角,來估計方位的變 化:

 $SIN \theta$ (方位變化) = 600 公尺(他船兩倍船長)/ (1852 公尺x ?海浬(它船距離))

 θ (方位變化) = SIN-1 600 公尺(他 船兩倍船長)/ (1852 公尺x ?海浬 (它船距離))

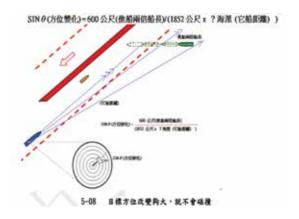
1.5度 = SIN-1 600 m / (1852 m x 12 NM) (它船距離= 12海浬, 方位變化為1.5度)

3.0度 = SIN-1 600 m / (1852 m x 6 NM) (它船距離= 6海浬,方位變化為3.0度)

4.6度 = SIN-1 600 m / (1852 m x 4 NM) (它船距離 = 4海浬,方位變化為4.6度)

6.2度 = SIN-1 600 m / (1852 m x 3 NM) (它船距離= 3海浬,方位變化為6.2度)

9.3度 = SIN-1 600 m / (1852 m x 2 NM) (它船距離 = 2海浬,方位變化為9.3度)


19度 = SIN-1 600 m / (1852 m x 1 NM) (它船距離 = 1海浬,方位 變化為19度)

由此可見,要有安全的通過距離 (600公尺),方位變化的角度與它船 距離成反比。例如

在4海浬時,需要4.6度方位的變化, 去產生足夠的安全距離600公尺,

在**2**海浬時,就需要**9.2**度,等於**4.6** 度的兩倍。

在1海浬時,就需要19度,等於9.2 度的兩倍。

這些簡單的計算,對我們有甚麼 意義?讓我們思考一下:

現在我們是觀測目標船的方位變化,是本船保持航向航速,這一個正弦三角形,是以兩條船的距離為最長的斜邊,我們所需要的全距離600公尺為我們的對邊,所得出來的角度。在四海浬的時候是4.6度,2海浬的時候是9.2度,為了方便記憶起見,我們就把它改成,

在4海浬的時候需要5度的方位變化, 在2海浬的時候需要10度的方位變 化,

相對的在一海浬的時候就需要**20**度的 方位變化,

這是說那本船保持航向航速,對 方如果是讓路船的時候,可以觀測到 他的方位變化,或者兩條船根本就沒 有碰撞危機,只是單純的交叉相遇, 我們在觀測他的方位變化時候,心裡 的底線是多少?才可以少年欸安啦。 也就是說方位變化有超過5度,就沒 有碰撞危機,我們可以呢稍微放心, 如果到四海浬的時候,他的方位沒有

變化到**5**度,那這時候呢我們就需要 怎麼樣?加強注意。

如果我們本身是直航船的時候, 也可以開始考慮是否需要?自行採取 避讓的行動,因為呢他船方位是穩定 的變化,並沒有突然的轉折,哪依照 避碰規則的第二階段,讓路船要採取 行動讓路的距離,一般也是在4到6 海浬。同樣,我們換一個角度來想, 我們是直航船需要保持航向航速,但 是對方一直沒有讓路,本船要做讓 路船採取行動,那我們要做讓路船, 至少要轉向幾度才能安全通過?那這 其實呢,是跟剛剛觀察目標船的方位. 變化是一樣的,只不過呢我們剛剛的 對邊,像這個圖上綠色的船,對邊就 是600公尺的安全距離,是綠色船需 要前淮的距離,那我們如果同樣取 這600公尺做安全距離,來做對邊的 話,就是我們要往目標船的屁股方向 移動600公尺,是我們主動讓路的時 候,四海浬的時候,要轉幾度?同樣 的也是

4海浬的時候,最少要5度的轉向, 2海浬的時候,最少要10度的轉向,

如果是在一海浬的時候呢,最少 需要**20**度的轉向。

在半海浬時,需要幾度,那你根本就沒有這個技術?所以這個是我們在呢觀測他船的方位變化,以及呢在估計本船呢需要轉向的角度多少?才會安全。那講到這裡,這些是我們避碰操作的通識,也就是近接避碰的基礎。

讓路船真方位的變化量。

- → 讓路船可能已經採取,也可能沒有 採取行動來避讓危險。
- 為了避免直航船採取的任何行動和 讓路船的意圖相衝突。直航船的行 動,要避免進入讓路船可能的行動 意圖區。
- ●如果讓路船的真方位,有了輕微的變化,直航船便可以通過真方位的變化,判斷出是否存在碰撞危險,需要多少的真方位變化量,取決於兩船之間的距離。

對一條300公尺長的船隻而言,如果運用我們對碰撞區域的理論,本船需避讓他船兩倍船身的距離,所以我們以他船的兩倍船長600公尺,來計算方位的變化,這是很簡單的數學式:

 $SIN \theta$ (方位變化) = 對邊;碰撞區域 600 公尺(他船兩倍船長)

除以……斜邊; (1852公尺x ?海 浬 (它船距離))

θ(方位變化) =SIN-1 600 公尺(他 船兩倍船長)/ (1852 公尺x ?海浬 (它船距離))

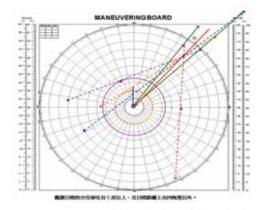
對邊為600公尺,我們需要轉向幾度,是由距離多少決定的。

- 需要轉向1.5度 = SIN-1 600 m /(1852 m x 12 NM) (它船距 離= 12海浬)
- 需要轉向3.0度 = SIN-1 600 m /(1852 m x 6 NM) (它船距離 = 6海浬)

- 需要轉向4.6度 = SIN-1 600 m /(1852 m x 4 NM) (它船距離 = 4海浬,)
- 需要轉向6.2度 = SIN-1 600 m /(1852 m x 3 NM) (它船距離 = 3海浬)
- 需要轉向9.3度 = SIN-1 600 m /(1852 m x 2 NM) (它船距離 = 2海浬)
- 需要轉向19度 = SIN-1 600 m / (1852 m x 1 NM) (它船距離 = 1海浬)

由此可見,方位變化的角度與它 船距離成反比,這是讓路船所需要的 轉向角度。

目標方位不變就會碰撞,目標方位改變夠大,就不會碰撞。在撞與不撞之間,一定有一個可以接受的安全距離,這個安全距離,我們把它定義為兩倍船長,以保持安全。各位看看上式,如果數學還可以,就會知道,正確的對邊長度應該是少於我們的假定,除了他船航向與本船相差90度時。所以我們計算的方位變化值,不一定正確,但是肯定較真正需要的方位變化值為大,也就是較為安全。


以後觀測目標船的羅經方位, 第一次觀測時,目標船的距離還在四 海浬以外,不知道多遠?第二次觀測 時,目標船接近到四海浬附近時,方 位變化已經有5度以上,幾乎可以確 定,此一目標船無碰撞危機,當值船 副就可以解除危機了。當然瞭望需要 持續不斷,後續就是憑感覺,第三次 觀測目標方位是否快速變化,與第二 次比較?

現在再回頭來看看,避碰規則第 **7**條(i)項的敘述:

如果駛近船舶之羅經方位無顯著 改變時,碰撞危機應視為存在;

由以上的說明,我們可以想想,如果一個目標在很遠的距離,我們就開始觀測他的方位,如果到了距離4海浬時,目標方位沒有5度以上的變化,是不是可以確定,此目標有碰撞危機?

第一次的觀測距離是多遠?有沒有關係?會不會誤判?

如上圖,我們看這張艦隊運動圖紙,共有10圈,每圈代表代表0.5 海浬,所以現在看到圖上,橘色的圓圈就是代表一海浬,假設我們在四海浬方位040度的位置,發現到目標的第二次回跡,我們在圖上是黑色的點來代替,哪有這一個點跟我們第一次觀測到目標船的方位比較,如果相差五度,可以獲得多少的CPA?不要忘記,我們前面一直在講,在4海浬的

時候,需要5度的方位變化,去產生 足夠的安全距離等等,那首先呢我們 看

粉紅色的這一條線,這一條線的第一次觀測方位是在035,4.5海浬的距離發現目標的回跡,我們以粉紅色的點來代替第一點,發現目標回跡是在方位040,距離4海浬的黑點,這兩點做成的相對運動線,就是這一條粉紅色的虛線,大概是180度的走向,這條相對運動線的CPA呢,我們看到是2.5海浬。那我們再來看

如果第一次是在五海浬,也就是紫色的這個點,方位是045,第二次同樣是黑色的點距離4海浬,方位040變小,這條紫色的線,他的CPA是1.8海浬,這個紫色的距離圈。

如果第一次觀測的時候是在陸海 浬的位置,他的方位是在**045**,第二 次觀測是黑點,這一條橘色線的**CPA** 是一海浬,也就是橘色的距離圈,

如果目標再遠,是在八海浬, 方位045,也就是右上角藍色的這一 點,這一點跟第二點四海浬040方位 的黑點做連線,可以發現怎麼樣?可 以發現CPA大概是0.7海浬。

我們做圖就可以證明怎麼樣?如果目標船大約在六海浬,我們第一次觀測他的方位,如果呢他的方位像現在圖上,是相對方位變小,從045變到040,像這條橘色的線所代表的,那這個目標呢就是會經過我們的船頭,而且他最近的距離是1海浬。這樣子呢對所有的船長來講,都已經足

夠,反之如果我們在很遠的距離8海 浬,就開始觀測他的方位,然後呢等 到四海浬的時候再觀測方位,反而沒 有像陸海浬的時候,來的準簡單,時 間也不必拖這麼久。一句話就是說有 沒有碰撞危機,在最後幾分鐘的觀 測,比你很早就注意到這一條船,來 得重要,要是年輕人因為沒有養成良 好的習慣,因為沒有足夠的經驗,來 好的習慣,因為沒有足夠的經驗,如 果不先把目標接近的情形呢,事先在 心裡面做一個預演,等到目標船接 近,時間到的時候呢,很可能會手忙 腳亂,所以呢我們初學者還是要應該 用最古老原始的方法,去呢觀測目標 的方位變化,培養我們的直覺。

讓路船的有效讓路行動,是讓路船真 方位的變化量,在4海浬時變化5°以 上。

如果在4-6海浬時,相對方位的變化無法被察覺到(在4海浬時變化5°以上),讓路船可能沒有採取早期避讓,或者避讓的幅度很小。如果在2-3海浬處,方位的變化仍然不明顯(在2海浬時,沒有變化10°以上),則可以確認讓路船沒有採取任何行動。在這裡,我們要知道自身的限制,

● 我的目測方位,能夠識別,讓路船 的相對方位變化是**10**°以上了嗎?

我們一直在強調目測方位以及目 測方位變化,是我們直覺的一部分, 前面的討論,目標船四海浬的時候, 需要轉向幾度?或是方位變化幾度? 才可以避免碰撞,夠保持安全的通 過。這是避碰的初級班的基礎,各位 不管在海上跑了幾年?如果你沒有這樣的知識基礎,那你也是初級班,需要按部就班,好好練習。

就初學者而言,因為我們的經驗 不足,所以需要利用羅經方位,幫助 我們做出正確的判斷,4海浬5度, 可是等到了避碰的高級班,也許是 近岸容易擱淺,或是目標船隻數目非 常多,我們就沒有那麼多的時間去處 理,第一次觀測的方位是幾度?以及 第二次觀測的方位到底相差的幾度? 是040?還是070?首先我們要能夠 確定目標方位線的參考點在哪裡?還 要能夠對第二次觀測到目標的方位, 已經與甲班上的參考點,產生了多少 的方位變化量?要能夠有一個目視的 估計,這個估計不能呢,就是隨便亂 做,這個也是需要訓練。就是先要知 道本船甲板上,各個方位參考點方位 差是多少?例如我們前面看到的帆船 的那張圖,

觀測左舷吊桿頂的相對方位為48度、 觀測左舷繫纜樁的相對方位為39度、 則左舷吊桿頂到左舷繫纜樁的相對方 位變化,就是48-39=9度。

這是第一步,如果有一條船第一次觀測的方位,是在左舷繫纜樁的參考點,第二次觀測到目標的方位,是在左舷吊桿頂的參考點,這條船的方位變化量就是48-39=9度。同樣的,我們可以算出來,

觀測左舷繫纜樁的相對方位為39度、 觀測左舷船頭擋浪板的相對方位為23 度,則左舷繫纜樁到左舷船頭擋浪板 的相對方位變化,就是**39-23=16** 度。

第二步,目標不一定出現在有參 考點的方位線上,我們可能等不到目 標的方位,變化到我們需要的數量, 因為海面上還有其他船隻,我們需要 更進一步的訓練,一眼就能看出方位 變化了10度。

7-29 哪裡可以取出 10 度的的方位變化量

圖7-29,我們取出相對方位的 變化量是**10**°的藍色線段,放在甲板 各部,由此可知,10度的相對方位在 船頭,可能是兩個櫃子的寬度,在船 舯可能是一個櫃子的寬度,在駕駛台 前面,可能是一個櫃子的3分之1。有 了這個概念,對於方位線參考點的取 捨,方位變化量是多少的觀察,就更 能上手,換句話說,我們的直覺又更 深了一層。看到這裡,相信大家跟我 一樣,如釋重負,早貼出來就好,何 必屁話那麼多,你看得累,要想想, 我要說到你懂更累,這是我的學習原 理,要調動你的潛意識,做一做頭腦 體操,才不會隨看隨忘。我們下期再 講,謝謝各位。

發電柴油機曲軸(Crankshaft)斷裂帶來的省思及緊急處置(上)

文/田文國1

任職二管輪時,由於經驗不足常 造成機器事故的因果關係錯置,因知 識、技術及經驗高度不足,事故原因 判斷失誤造成頭痛醫頭腳痛醫腳,白 白浪費時間與昂貴的配件損失,今利 用時間一一整理,期勉後進們用心學 習,避免不必要時間浪費與昂貴的配 件損失。

一、緣由

任職二管輪時,由於近洋航線 及船員心態感知,船舶機器列行保 養工作並不如遠洋航線紮實,發電 柴油機Daihatsu 5L20航行時負荷 稍重排氣溫度便上升至臨界溫度約 380~400℃,必須每天當班時拆解 試壓檢查噴射閥及噴射泵,勉強維持 機器正常運轉,每天早上0-4當班時 不停循環工作頗為辛苦。

當下午12~16當班時工作稍輕鬆,檢查發電機時發現No.1發電機飛輪底部揀起一斷裂螺栓及底座墊片,仔細檢查發電機時發現發電機飛輪底部第五缸底座固定螺栓(Reamarbolt)斷裂如圖1、2所示,當時的我只覺得是螺栓材料不好因而斷裂,去工作間找到一外型及尺寸相似螺栓,將撿起墊片一一塞入後重新用力鎖緊,未了防止再度鬆脫加上彈簧墊圈然後用雙螺帽鎖緊,一切完整無誤。

圖1 發電機底部固定螺 栓螺帽斷裂情形

圖2 發電機飛輪底部揀起一斷裂螺栓及底 座墊片

經使用一航次後約一個月後,檢查又發現發電機飛輪底部經換新的第五缸底座固定螺栓(Reamar bolt)斷裂,當時的我只覺得是換用螺栓材料有瑕疵因而斷裂,再去工作間找到一外型及尺寸相似螺栓重新用力鎖緊,且同樣為了防止再度鬆脫加上彈簧墊圈然後用雙螺帽鎖緊,一切完整無誤。

二、事故發生

我於二個月後因私事請假下船, 於家中接獲船上大管由菲律賓來電, 詢問No.1發電機曲軸(Crankshaft) 第4缸後曲柄臂處斷裂如圖3所示, 接到此一電話我恍然大悟,原來前 二、三航次發電機飛輪底部底座固定 螺栓(Reamar bolt)斷裂,其實應該 是果,其真實原因為曲軸撓度變化過

¹ 台灣海洋大學商船學系教授 曾任海運公司輪機長 驗船師

大,不正常曲軸扭矩先使脆弱處底座固定螺栓(Reamar bolt)斷裂,但我一直沒有想到曲軸扭矩的不正常,僅 膚淺認為是底座固定螺栓(Reamar bolt)材料不佳而斷裂。

圖3 發電機曲軸(Crankshaft)第4缸後曲 臂處斷裂

三、事故處理

(1)現場加工焊接

該輪於菲律賓請當地工人緊急 研磨及焊接曲臂,勉強維持航行使 用但於開船返台一天後焊接處又再度 斷裂,該船勉強由單一台電機使用返 台。

(2)後經公司購置較大功率Yanmar發 電柴油機一台

因那年代時高雄港是全世界拆船第一的港口,港內待拆及正在拆除的船舶頗多,公司順利購置較大功率Yanmar發電柴油機及裝妥,由於我已離職因此並未參與事後工作,只覺得船上二台不同廠牌發電機在日後的保養、維修及配件購置上困難重重,這也反映當時市場需求及不同年代的工作文化及需求下的過渡時期。

四、檢討

(1)當班時檢查發電機時發現No.1發 電機飛輪底部斷裂螺栓 當時沒經驗且不以為異,只膚淺 認為那是螺栓材料不良,去工作間隨 便找一相似螺栓換上。但經一個月後 再度斷裂,還是簡單認為工作間螺栓 不好再找一隻只換上,並未想到斷裂 螺栓其實為果。

(2)接獲船上大管由菲律賓來電

詢問No.1發電機曲軸(Crank-shaft)第4缸後曲臂處斷裂,接到此一電話我恍然大悟,原來前二、三航次發電機飛輪底部底座固定螺栓(Reamar bolt)斷裂,其實應該是果,其真實原因為曲軸撓度已變形過大。

(3)由經驗我學到技術

由船東財務(購置機器)及商譽(船期延誤)雙重重大損失,我學到技術及經驗,凡日後動到機器底座螺栓,我一定要仔細量測曲軸撓度(Crankshaft deflection),以確認曲軸撓度在正常工作變矩範圍內,否則對主軸承、機座及底座螺栓及墊片必須作確實調整及校正。

(4)量測曲軸撓度(Crankshaft deflection)不得偷懶

日後做大管及輪機長時,為杜 絕此一嚴重重大事故再度發生,一定 盯著或協助二管發電機量測曲軸撓度 (Crankshaft deflection),絕不得 偷懶但允許又技術偷懶如量測單數缸 或雙數缸,但第1、中間及最後一缸 其數字必須正常,且量測絕對不得偷 懶。

五、結論

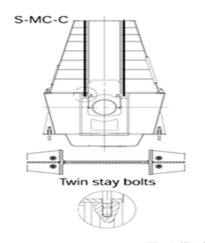
書本上對於這一段柴油機曲軸 (Crankshaft)技術,基本上都有詳細 的敘述,但工作上由於經驗的不足, 及有經驗高階職位主管並未實際指示 參與,造成重大損失使船東財務(購 置機器)及商譽(船期延誤)雙重重大損 失,但我學到寶貴的技術及經驗。

柴油主機牽柱螺栓(Tie rod) 斷裂帶來的省思及緊急處置

初晉陞任職二管輪時,主機 Kobe MAN 7KZ70/120環流掃氣二 衝程低速柴油機,由於船齡已25年機 器性能狀況不佳,長途由美南密西西 比河中Baton Rouge港口裝肥料,於 曼谷湄南河卸載時,由於卸貨時間長 達10天,機艙工作也不斷進行中。

一、緣由

某日輪機長派工檢查主機曲軸 箱,大管爬進主機曲軸箱檢查十字 頭導板及活塞桿連趕曲軸承及主軸承 等,約一小時後,大管從曲軸箱底 部取出一斷裂牽柱螺栓,直徑約120 mm好大及好重的斷裂牽柱螺栓及螺帽,如圖4所示。


看到此一景象大家都傻了,立即 找出係主機第四缸左前牽柱斷裂,但 由於牽柱直徑120 mm又重又長約 9m左右,如果不從曲軸箱檢查,氣 缸頭外觀上不可能發現此一牽柱螺栓 (Tie rod)斷裂,發現此一現象對我預 估可能要在曼谷待上一長時期了,因 為據經驗所知訂製此一螺栓至少需時 三月,我還做夢可在此多停留待料修 理。

二、事故發生

船上輪機長立即將此一事實報告 公司總部,台北也即刻安排訂料,另 指示船上臨時請工廠協助修理,也同 時輪機員全力配合進行中。

三、事故處理

- (1)機艙頂部開洞,吊出又長又中重整只底部斷裂牽柱,如圖5所示。
- (2)約在400mm高度處切斷底部斷 裂牽柱,如圖6所示。

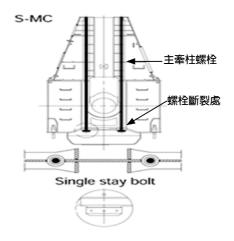


圖4主機斷裂牽柱螺栓

- (3)帶回工廠開V槽焊接並加工校正, 如圖7所示。
- (4)帶返船上再開V槽焊接並加工現場 磨光校正,如圖7、8所示。
- (5)焊妥磨光後回裝牽柱,重新上緊 牽柱使用約6~7成正常扭力鎖 緊。
- (6)重新依規定機器鎖緊其他全部牽 柱螺栓。
- (7)重新鎖緊機器全部底座螺栓。
- (8)檢查曲軸箱並量測全部氣缸曲軸 撓度,一切正常後開船。

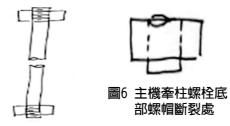
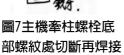



圖5主機牽柱螺栓完整圖



圖8主機牽柱螺栓底部 螺紋處二次再焊接

四、檢討

- (1)台北安排訂料於三個月後抵日本 後,新購牽柱送船即更新焊接牽 柱。
- (2)此一難得機會讓我學到,現場如

- 何利用技術完成簡易便捷組合方 法,讓船舶繼續航程。
- (3)整個修理方法及過程我全程參與,對於日後防範柴油機主牽柱 鬆弛或斷裂有特別的注意。

五、結論

- (1)檢查主機曲軸箱內部各項目不得 偷懶。
- (2)檢查主機曲軸箱項目多了牽柱敲 擊聲響探測。
- (3)曲軸箱底部保持潔淨,任何異物 必須找出來源原因。
- (4)由於主機性能下降或因船速降速 運行至接近危險轉速或附近運轉 時,輪機員需適時調整轉速,避 免太接近危險轉速或附近運轉 時,尤其因風浪造成主機轉速 上、下波動過大時更須小心謹慎 處置。
- (5)如上過負荷或太接近危險轉速或 附近運轉時運轉狀況發生後,主 機曲軸箱檢查頻率必須適當提 高。

發電柴油機油門桿不正常抖 動帶來的省思及緊急處置

任職二管輪時,當班時發現No.1發電柴油機Niigata 5LF-25油門桿有不正常抖動現象,覺得有異。經啟動No.2發電柴油機並聯後停止No.1發電柴油機,並未發現No.2發電柴油機有任何油門桿有不正常抖動現象發生。

開啟No.1發電柴油機曲軸箱仔 細檢查曲軸、曲軸承、活塞栓軸承及 主軸承等,發現No.1主軸承壓蓋螺栓 鬆動,精仔細小心一一上緊後,機器 恢復正常,油門桿有正常抖動現象消失。

一、緣由

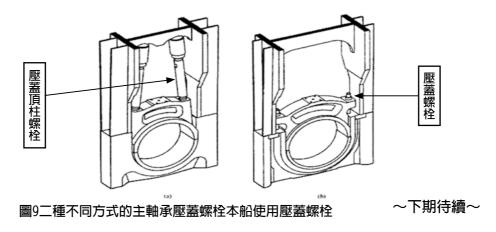
當直班時檢查運轉中No.1發電機,始終感覺發電柴油機油門桿有不正常抖動現象,從外觀感覺不到有任何異常狀況,經啟動No.2發電柴油機並聯後停止No.1發電柴油機,並未發現No.2發電柴油機單獨運轉並未有任何油門桿有不正常抖動現象發生。

二、事故發生

當班發現No.1發電機油門桿有不正常抖動現象,並不是很嚴重,機器其他運轉參數也都顯示正常,由於二管當班時就在發電柴油機旁側,自我感覺有點奇怪,因此啟動No.2發電柴油機,並聯後負荷轉移至No.2發電柴油機,空載後運轉No.1發電柴油機,並停止No.1發電柴油機,此時並未發現No.2發電柴油機單獨運轉有任何油門桿有抖動現象。

三、事故處理

停止No.1發電柴油機運轉後,開啟曲軸箱仔細檢查曲軸、曲軸承、活塞栓軸承及主軸承等,發現No.1主軸承壓蓋螺栓鬆動,經仔細小心上緊後,如圖9所示,機器恢復正常,油門桿有不正常抖動現象消失。


仔細量測全部曲軸撓度一切正 常。

四、檢討

當班時多注意使用機器細節, 正常使用的機器不會一下子產生重大 事故,凡任何事故發生前一定會有各 種不同信息、線索等不斷出現,只是 當班者有沒有用心注意到,機器重大 事故發生前,各種不同信號會不斷放 出。

万、結論

小心駛得萬年船,依據經驗顯示 機器產生重大事故絕非偶然,各種不 同異樣音響、振動、氣味及溫度等, 會分別不斷的放出,只要小心注意一 定能及時發現阻止繼續發生,使機器 重大事故防範於未然。

