## 專刊暨經驗交流

# 船、機、螺槳在運航操控性能運用之探討(二)

船舶正常航行時,機、槳配合穩 定在點A。當船舶阻力增大時,如果 主機油門開度不變,即主機仍按全負 荷速度特性曲線1工作,則螺槳特性 曲線將由I段移至線II,機、槳配合點 由點A沿曲線1左移至點a。這時雖然 功率和轉速都有所降低,但點a在等 轉矩限制線OA上方,主機處於超轉 矩下運行,還容易出現大負荷低轉速 運轉現象,使主機工作惡化。此時, 如果還要維持原轉速nu,則必須加大 油門,使主在超負荷速度特性曲線4 上工作,這顯然是不允許的,因爲此 時機、槳配合點移至點e,主機處於 既紹功率又紹轉矩的嚴重負荷的工況 下工作。正確的操作應是採取減小主 機油門格數,使主機在部分負荷速度 特性曲線2上工作。工作點降到圖示 點b以下才是安全的。因此,在船舶 阻力增大時,決不可因轉速自動下降 而盲目加大油門。有的主機在調速器 中裝有轉矩限制器,當船舶阻力增大 時會自動降低油門,使工作點移至點 b。有些船裝有功率限制裝置,當該 裝置起作用時,駕駛室功率限制指示

燈會亮,此時駕駛員不可輕易使用取 消功率限制按鈕加速,應使用遙控俥 鐘略微減速,以保安全。

船舶阻力減小時,如主機油門開度不變,機、槳配合點A右移至點c。此時,主機雖然在全負荷速度特性曲線1上工作,但功率和轉速都超過標定值,主機處於超轉速工況下進行,這亦不允許。爲此,必須減小油門開度,使主機工作於部分負荷速度特性曲線3的點d上,以保證轉速不超過標定值n<sub>H</sub>。

導致船舶阻力變化的因素很多, 可規納爲以下幾個方面:

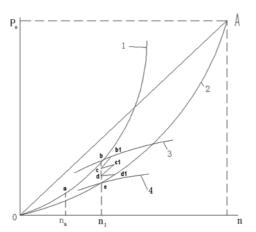
- (1)船舶航次裝載量變化;
- (2)船底污髒;
- (3)船舶在不同氣象條件下航行,如 頂風、頂流和大風浪中航行,以 及在順風順流中航行;
- (4)船舶在不同航區中航行,如由深 水進入淺水區航行,在狹窄航道 中航行等。

船舶在各種航行條件下變化的 $\lambda_p$  值列表如表2所示:

| 航 行 情 況    | $\lambda_{\mathbf{p}}$ 値 |
|------------|--------------------------|
| 1、穩定等速航行   | 常數                       |
| 2、起航與加速工況  | 逐漸增大                     |
| 3、倒俥工況     | 減少                       |
| 4、反轉制動過程   | 由負數逐漸漸變爲0                |
| 5、船舶轉彎     | 減小                       |
| 6、吃水增加(減小) | 減小(增大)                   |
| 7、頂風(順風)   | 減小(增大)                   |
| 8、深水(淺水)   | 增大(減小)                   |
| 9、海水(淡水)   | 增大(減小)                   |

## 表2 船舶在各種航行條件下變化的λ。值列表

### 2、加速速率控制


加速速率的控制一般包括船舶起航和船舶加速時加速速率的控制。對於駕駛台操縱主機,遙控系統中一般設有:起動邏輯程序在主機負荷爲額定功率的30~70%的低負荷運行時,爲保證船舶操縱的機動性,設有快加速程序(港內航速油量控制);在主機負荷爲額定功率的70~90%的高負荷時,爲保證主機安全運轉,設有程序(Program increasing)加速度程序(至海上全速油量控制)。然而不論是

駕駛員通過遙控俥鐘操縱主機或輪機 員通過操縱手柄操縱主機,討論機、 槳配合工況變化的性質是一樣的。

船舶起航和加速時間工況都是過渡工況,因船速在變,Ap也在不斷改變,所以機、槳配合點不是只在一條推進特性曲線上變化。

#### (1)船舶起航時的速率控制

船舶起航時有駕駛室要求主機轉速較低 $(n_1)$ 和較高 $(n_2)$ 兩種情況,如圖4(a)(b)所示。



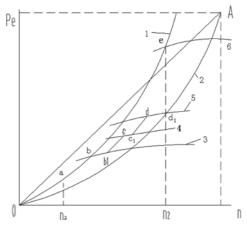



圖4a、b 船舶起航工況:1-λp=0時螺槳特性曲線;2-穩定航行時螺槳特性曲線; 3、4、5、6-部分負荷速度特性曲線

36 海 月 刊 第 7 0 2 期

要求主機起航轉速較低的操俥 方法一般如下:起動主機,當主機 轉速到過起動轉速(即點火轉速)點a 時,將油門手柄推至與n<sub>1</sub>相對應的 部分負荷速度特性曲線3的油門格數 上,於是主機發出功率帶動螺槳加速 運轉。由於發航瞬間船速爲零,所以 機、槳配合工作點沿螺旋槳特性曲 定。此時,船速開始由零逐漸升高。 隨船速增高,λ,值便大,螺槳特性曲 線向右變動,使機、槳配合點沿曲線 3右移。由於起動主機時加的油門較 大,所以轉速增高開始偏離n<sub>1</sub>。為 了嚴格執行俥令轉速n<sub>1</sub>,此時應及 時地不斷減小油門格數,以儘量減 小n₁得偏離量,使機、槳配合點沿 bb<sub>1</sub>cc<sub>1</sub>dd<sub>1</sub>e折線變化,最後落在點 e,並在e點 $n_1$ 下穩定地運轉。點e是 部分負荷速度特性曲線4與穩定航行 螺槳特性曲線2的相交點。

如果駕駛台室要求起航轉速較高,如圖(4b)所示n<sub>2</sub>,則要注意不可盲目加大油門,若一下子將調油手柄推到n<sub>2</sub>所對應的部分負荷速度特性曲線6的油門格數,主機容易發生故障,因爲此時機、槳配合點暫時穩定在點e,點e在等轉矩限制特性線OA的上方,主機處於超轉矩下工作。正

確的操俥方法應該是逐級加大油門, 使主機轉速逐漸接近n<sub>2</sub>,即機樂配合 點按abb<sub>1</sub>cc<sub>1</sub>dd<sub>1</sub>折線進行,最後落 在點d<sub>1</sub>穩定運轉。要控制主機轉速不 要上升過快,特別在暖機不夠充分的 情況下,以避免發航過程中主機超負 荷。

#### (2)船舶加速時的速率控制

船舶加速工況與起航工況基本相似,如圖5所示,所不同的是低負荷加速是以港內某一低速開始,而高負荷加速則是以港內至速開始加速。

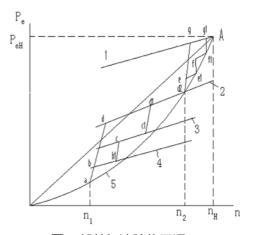



圖5 船舶加速時的工況

港內加速,同樣以轉速n1加速 到n2有兩種方法。一是將調油手柄 一下子推到與n<sub>2</sub>相對應的部分負荷速 度特性曲線2的油門位置,這時,由 於船舶慣性大,油門雖己加大,但船 速仍基本維持原航速,所以機槳配合 點將沿等航速線 a **d**上升至點**d**,隨後 隨船速提高, $\lambda_p$ 增大,再沿曲線2過渡到點 $d_2$ ,並在 $d_2$ 點以轉速 $n_2$ 穩定工作。但由於該加速過程中可能會有一部分處在等轉矩限制線OA的上方,主機處於超轉矩和大負荷低轉速下運行,容易損傷主機,所以這種操作方法是不可取的。最好的操作方法應是逐級加大油門,使機、槳配合點沿abb<sub>1</sub>cc<sub>1</sub>d<sub>1</sub>d<sub>2</sub>折線變化。從圖中可以看出,在低負荷時,螺槳特性曲線5與等轉矩限制線OA之間幅度相對較大,所以油門分級可適當大些,轉速提高可較快一些。

從港內全速加速到海上全速, 是船舶定速航行時常見的高負荷加 速工況,與低負荷加速工況完全一 樣,從港內全速工作點d。加速過程 時,油門分級越多越好,這樣可使在 海上全速工作點A附近的超轉矩工作 區大大減小。爲使主機熱負荷較緩慢 增加,一般加速過程需要30分鐘以 上,如果一下子開大油門,或按下負 荷程序取消按鈕,讓船速迅速提高, 即機、槳配合點沿dagA變化,則將 使主機的工況幾乎都處在超機械負荷 的情況下,至使主機產生一系列不良 惡果。諸如:可能引起氣缸安全閥跳 脱,甚至於氣缸、氣缸頭破裂或損傷

曲軸和軸承;可能使受熱部件產生裂 紋;容易引起燃燒不良,排氣冒黑 煙;容易引起廢氣渦輪增壓機喘振 等。因此非船舶緊急情況,不可輕易 按此按鈕。

#### 3、船舶倒俥主機換向時的速率控制

圖6所示為主機換向時螺槳的 倒轉特性曲線。曲線1表示船舶全速 前進時主機從正俥改爲倒俥的運轉 情況。船舶全速前進時,機、槳配 合點爲a(標定工況)。當接到倒俥俥 令後,先停止主機噴油,使主機轉 速轉速迅速下降,此時因過程比λp 迅速增大轉矩迅速下降,至轉速爲 60~70%nH的點b時,槳的轉矩爲 零。b點以後,船舶由於慣性幾乎仍 在全速前進,而螺槳受水流沖擊產生 負轉矩,像水輪機一樣帶動主機仍按 正轉方向回轉。這負轉矩用來克服主 機運轉部件和軸系的摩擦阻力矩,因 而轉速迅速下降,至30~40%nH的

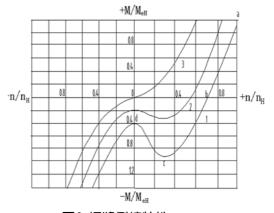



圖6 螺槳倒轉特性

海員月刊第702期

點c時,負轉矩達最大值。

在c點之後,隨轉速下降,負轉 矩開始減小。當負轉矩減小到與主機 運動部件和軸系的摩擦阻力矩相平衡 的點d時,螺旋槳便停止自由轉動。 此時主機可以換向並倒俥起動,起動 力矩必須大於此時螺槳的負轉矩M。 才能帶動螺槳反轉,產生負推力先對 船舶起制動作用。由於此時船舶因慣 性仍在前進,因此當倒俥轉速還未到 40%n<sub>H</sub>時,主機軸系所承受的轉矩 就以達到120%M。 若要使倒俥轉 速過到nH,則負轉矩將高過4M。。 可見,當船舶以全速前進時,操縱主 機以高的倒俥轉速工作是很危險的。 圖中曲線2和3分別表示低速和繫泊情 況下進行轉向反轉時的轉矩變化。

據上分析,當船舶在全速前進中 需要緊急倒俥的話,正確的操作應該 是:

- (1)立即關油門,停止向主機供油;
- (2)當轉速下降到60~70%n<sub>H</sub>時,進 行倒俥換向:
- (3)換向完畢,即可倒俥起動(此時主機還在正轉,轉速已降到30~40%n<sub>H</sub>),用壓縮空氣制動,如果一次制動不成功,稍停幾秒進行第二次制動(這時千萬不可進油):

(4)當轉速接近零又變爲倒俥時,推 上油門,倒俥開出後,逐漸調 節油門格數,使轉速符合俥令要 求。

開始時轉速不能超過40~ 60%n<sub>H</sub>,否則將使軸系超機械負 荷,只有當船舶已停止前進開始倒航 時,才可逐漸提高倒俥轉速。如駕駛 室遙控,一般在全速換向過程中,先 把遙控俥鐘從全速正俥拉到半速倒 值,待船開始倒航後再拉到全速倒 俥。船舶倒航時,由於船艉形狀肥 大,船體阻力比正俥時大,螺槳特性 曲線比正俥陡。如圖7所示,設全速 正俥工作點A,當船舶倒航時,如果 也在全負荷速度特性曲線1上工作, 則機槳配合點由A移向點a,點a在等 轉矩限制線OA上方爲超轉矩。爲此 只好減小油門將機、槳配合點移向點 b。n。即爲主機倒航時所允許的最大 轉速,一般不得超過70~80%n<sub>H。</sub> 每艘船的最大倒航轉速由輪機人員跟

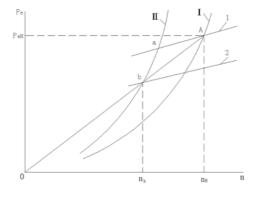



圖7 船舶倒航工况

據主機排煙溫度來確定。同樣道理, 各檔倒俥轉速也均比相應正俥轉速 低。

### 五、結論

保證主機安全、可靠而經濟地工作,並儘量延長其使用壽命是輪機員的基本職責,但需要駕駛員相互配合。主要是在保證安全操船的前提下要合理地操縱主機,不輕易將機器限制按紐排除。輪機長憑藉自己積累的主機運轉經驗,通過熱力檢查和機械檢查,仔細觀察主機各部分運轉工作狀況,依據定期維修保養及運用情況,根據主機技術狀態、塢修日期、主機運行參數變化包括排氣溫度、排煙研色、增壓機轉數、掃氣壓力和溫度、冷卻水溫度、潤滑油溫度等,在船舶定航後,調整妥自己認爲合適的

Total power output 54.2% (54.8%)

Shaft power
output 49.3%

Gain = 9.9% (11.2%)

Lubricating oil
cooler 2.9%

Jacket water
cooler 5.2%

Exhaust gas
and condenses
22.9% (22.3%)

Air cooler
14.2%

Heat radiation
0.6%

圖8 熱平衡圖Form the MAN B&W 12K98MC/ME engine with TES operating at ambient reference conditions at 100% SMCR[15]

油門格數,重新規定定航轉速。一般 對於技術狀態較好的主機,長期的低 負荷下運行反而對機器不利,所以儘 可能調高轉速。需要變動定航轉速, 通常是輪機長與船長協商決定的,但 一旦輪機長規定了主機轉速和油門, 除非緊急狀況外未經允許,值班駕駛 員和輪機員不得擅自改變。

[註1]機器功率使用範圍:機器製造廠 廠出售功率(額定功率)為(用MCR 表示),裝船與螺旋槳配合的功 率都要低於此點的功率,一般為 90%MCR,此功率稱之為海上 允許使用的最大功率,有的用 MCR表示。(MCR-Maximum Continuous Rate)。考慮海上 功率保留系數後,在服務航速下 使用的功率稱之服務功率CSR(或

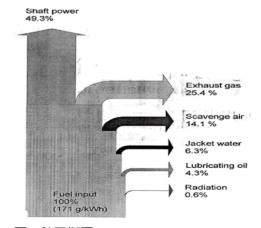



圖9 熱平衡圖Form the Wartsila 12RTA96C engine with TES operating at ambient reference conditions at 100% SMCR[16]

海員月刊第702期

CSO)(CSR-Continuous Service Output; R-Rate)海上保留系數即海上儲備功率(Sea Margin),不同類形的船有所不同,定期輪船期要求準確,海上受惡劣海況影響時要加速保準班,因而儲備功率就大。一般類型船儲備系數10%~15%。

[註2]現代船用主機燃油燃燒產生的熱量分配為:用於作功的占50%左右、排氣帶走的23%、掃氣帶走的熱量14%、冷卻水及潤滑冷卻帶走的占8%左右,其餘為機器的散熱[15、16]如圖8、9所示。

### 參考文獻

- (1)Colin R. Ferguson. Allan T. Kirkpatrick "Internal Combustion Engines" 2nd ed 2001 John Wiley & Sons Inc.
- (2)彭水生 "船舶柴油機測試技術" 1996 大連海事大學出版社
- (3)詹玉龍 張興芝 "輪機管理" 1993 科學出版社
- (4)吳恆 "船舶動力裝置技術管理" 1999 大連海事大學出版社
- (5)吳恆 "現代輪機技術管理" 1998 大連海事大學出版社
- (6)郭錦榮 "最新實用重柴油機精華" 中國航海技術研究社 May/1986.

- (7)樓無畏 "最新輪機實務" 前程出版 社 Aug/1997
- (8) 樓無畏 "重柴油機實務" (十版) 前程出版社Aug/1994
- (9)樓無畏 "船舶輪機實務" (九版) 前程出版社Aug/1995.
- (10)錢耀南"船舶柴油機" 1999 大連海事大學出版社
- (11)Instructions for 50-90MC M C E type engines operation. MAN B&W Diesel A/S Copenhagen, Denmark
- (12)MAN B&W Service letters: Survey 1968-1997; Service letters MC engines 1983-1997.
- (13)M.David Burghartd James
  A. Harbach "Engineering
  Thermodynamic 4th ed)
  Harper Collins College
  Publishers. P-25.
- (14)Exxon Marine Conversion Tables and Charts Exxon International Company. 1973 p-7

#### 作者:

- 1 合灣海洋大學商船系副教授
- 2 合灣海洋大學商船系研究生
- 3 台灣海洋大學商船系研究生